

Version V1.0 du 15 décembre 2023

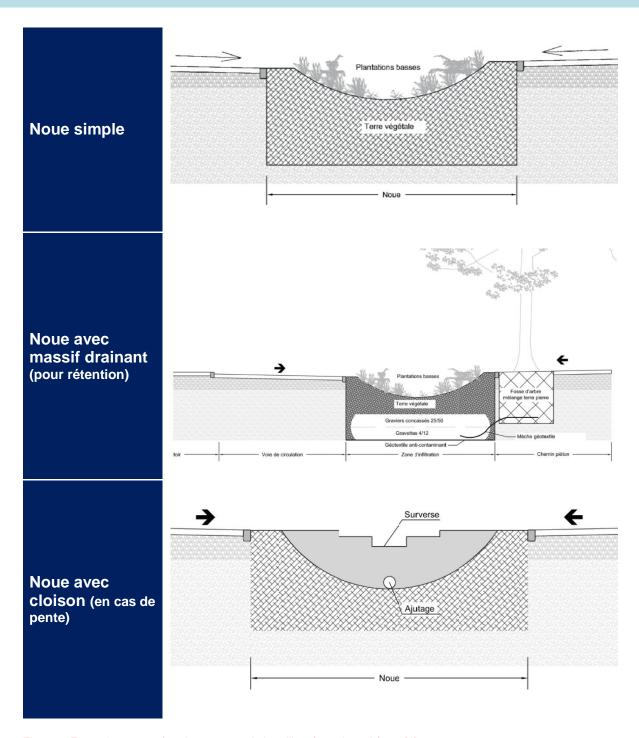
NOUES

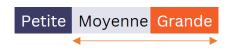
1. DESCRIPTION GÉNÉRALE

Une noue est une fosse végétalisée, linéaire et à faible pente souvent établie dans les zones urbaines à proximité des routes avec l'objectif de réduire le risque d'inondation pendant ou après de fortes pluies. L'objectif des noues est comparable à celle des jardins de pluie. Elles promeuvent l'infiltration et la rétention des eaux de ruissellement (provenant principalement des infrastructures de transport) et éliminent/bloquent les polluants et les sédiments lorsque l'eau ruisselle à travers la végétation et les couches de sol. Le choix de la végétation pour les noues est variable, mais les plantes indigènes à racines profondes sont courantes et préférables.

1.1. FONCTIONNEMENT TECHNIQUE

Le type de noue varie par rapport à la perméabilité du sol et la pente locale. Pour éviter l'accumulation d'eau pendant plus de 48h, il est possible d'ajouter des massifs drainants et/ou un drain. Si le terrain à une pente aiguë (supérieur à 2 %) certaines noues sont équipées de barrages (type redans) ou de constructions similaires pour corriger la pente. Cela permet de limiter l'érosion, retenir plus d'eau, filtrer plus de polluants et réduire la vitesse du ruissellement [3]. On notera qu'il est aussi possible de plateler une noue et ainsi d'en faire un cheminement piéton praticable tout en conservant son fonctionnement hydraulique.




Figure 1 : Types de noues et fonctionnement technique illustré par des schémas [3].

2. RÉGLEMENTATION DE RÉFÉRENCE

Les noues sont parfois réglementées dans les documents locaux d'urbanisme.

3. MODALITÉ DE MISE EN ŒUVRE 3.1. ÉCHELLE

La capacité d'élimination/piégeage des polluants des eaux de ruissellement par la noue est directement liée à son échelle. Une grande échelle contribue à la diminution du colmatage et, par conséquence, la nécessité d'entretien [3].

3.2. ETUDE PREALABLE ET CONCEPTION

3.2.1. TYPES DE NOUES

Туре	Fonctionnement	Type de sol
Noue Infiltrante	L'eau est retenue avant d'être infiltrée dans le sol naturellement.	Sols perméables (capacité d'infiltration > 20 mm/h) et non pollués
Noue de tamponnage	L'eau est retenue et déversée, à débit régulé, dans un exutoire.	Sols peu perméables (capacité d'infiltration < 1mm/h)
Noue mixte	L'eau est infiltrée dans le sol mais aussi déversée dans un exutoire.	Capacité d'infiltration entre 1 et 20 mm/h

Tableau 1 : Les différents types de noues [5 ; 14].

3.2.2. VEGETATION

Les arbres et les arbustes

Privilégier des plantes indigènes à racines profondes qui résistent aux inondations occasionnelles. Celles-ci peuvent être combinées avec des plantes esthétiques [3].

Densité de végétation

Une végétation assez dense permet un ralentissement de l'eau, cependant, une végétation trop dense cause des accumulations d'eau.

Hauteur de végétation

La hauteur de végétation (buissons, arbustes) doit être choisie en conjonction avec les problématiques de visibilité pour ne pas gêner la potentielle circulation. [3]

3.2.3. MISE EN ŒUVRE

Lors de travaux impliquant l'infiltration d'eaux de pluie dans les sols, une étude géotechnique doit être menée afin de déterminer la possibilité et la quantité de l'infiltration. On surveillera particulièrement plusieurs aspects :

- Si la nature du sol permet l'infiltration (sols gypseux ou karstiques sensibles...),
- Si les sols ne présentent pas des taux trop élevés de pollutions,
- La profondeur de la nappe doit être supérieure à 1 mètre,
- La perméabilité des sols.

3.2.4. PENTE

LA PENTE TRANSVERSALE

• Entre 3:1 et 4:1 (jamais <2:1)

Doit être **douce et favorable à l'infiltration**. Cela facilite et sécurise l'entretien et permet une vitesse appropriée d'écoulement et de filtration des polluants [6]

LA PENTE LONGITUDINALE

• Entre 1 et 6%

Une pente inférieure à 1% favorise l'accumulation de l'eau et supérieure à 6% cause l'érosion [7]. Il est donc préférable de rester entre 1 et 6 %. La pente peut être adoucie par l'utilisation de parois et redans.

3.2.5. DIMMENSIONEMENT

Principe [14]:

- Déterminer une pluie de projet avec un temps de retour ;
- Déterminer un volume de rétention ;
- Dans le cas d'une noue infiltrante ou mixte, déterminer sa **surface d'infiltration minimale** (en fonction de la capacité d'infiltration du sol).

3.3. TRAVAUX

3.3.1. MATERIAUX

Les matériaux utilisés diffèrent par type de noue. La noue infiltrante végétalisée ne demande presque rien, tandis que la noue de tamponnage nécessitera plusieurs types de matériaux [5].

- Massif drainant ou infiltrant (gravier roulé)
- Empierrement
- Géotextile / Géo-membrane (EPDM)
- Drain
- · Engazonnement & plantations

3.4. ENTRETIEN

3.4.1. MODALITE

Entretien **typique des espaces verts** avec fréquence régulière.

Les principales maintenances	Lieu d'application	Description	Fréquence	Observation
Décolmatage	Ouvrages d'infiltration	Aérer la couche superficielle (un curage) pour qu'elle ne perde pas sa fonction d'infiltration [3; 8].	Rare	Il faut faire une caractérisation physico-chimique de chaque composant prélevé lors d'un curage, car s'ils sont pollués, il est nécessaire de trouver la meilleure solution de gestion [8].
Réfection totale ou partielle	Structure	Refaire tout ou partie de la structure	Evénement d'endommagement particulier (type accident de la route) ou en fin de vie [3].	

Tableau 2 : Description des principaux entretiens

3.4.2. DURÉE DE VIE

La durée de vie moyenne est de 15-20 ans [3; 10].

3.4.3. ACTEURS

Conception	Bureau d'étude - Paysagiste	
Entretien	Services de la municipalité	
	Services des citoyens par le biais d'actions civiques pour le jardinage urbain	

Tableau 3 : Les acteurs du projet

4. ASPECT ÉCONOMIQUE © © © ©

Coûts à titre indicatif. Les possibilités de variations locales sont à prendre en compte.

Opération	Investissement
Terrassement	5 à 20 € HT/m³
Installation du massif drainant	60 à 100 €/ml [14]
Engazonnement	1 à 2 €/m² [14]
Curage environ tous les 10 ans	1€ HT/ml [11]

Tableau 4 : L'aspect économique du projet

Selon l'Agence de l'eau RMC [2], les noues ont un bon coût bénéfice grâce à leur bas coût et leur longue durée de vie.

5. IMPACTS

Impacts Positifs et Négat	iifs	Noue s	Noues de drainag e
Gestion de l'eau pluviale	Infiltration	2	2
	Rétention	1	2
	Transport du surplus	2	2
	Cycle de l'eau naturel (stockage et infiltration)	2	2
	Cycle naturel du carbone (stockage, filtration, transformation)	1	1
Multifonctionnalité des sols	Cycle des nutriments (stockage, filtration, transformation)	1	1
	Support de végétation	1	1
	Biodiversité des sols	1	1
	Echelle de fonctionnement	1	1
Mice on course	Flexibilité	2	2
Mise en œuvre	Contraintes de dimensionnement/mise en œuvre	1	1
	Contraintes de fonctionnement/gestion		
	Performances d'abattement	2	2
Pollution de l'eau et des sols	Risque de relargage en cas de pollution des sols sous- jacents	-1	-1
Biodiversité	Faune	1	1
(diversité et quantité)	Flore	2	2
Adaptation et atténuation	Mitigation globale des ilots de chaleur urbains	1	?
climatique	Bilan carbone	?	?
Amánitán	Confort thermique/Ombrage-fraîcheur	?	?
Aménités	Accès espaces verts	1	2
Aspects sociaux-économiques	Attractivité	2	2
	Cohésion sociale		
	Entretien	1	1
	Traitement des eaux		
	Durabilité	0	0
	Coût initial de mise en œuvre		

Tableau 5 : Les impacts positifs et négatifs de l'implantation de la noue

LES NOUES

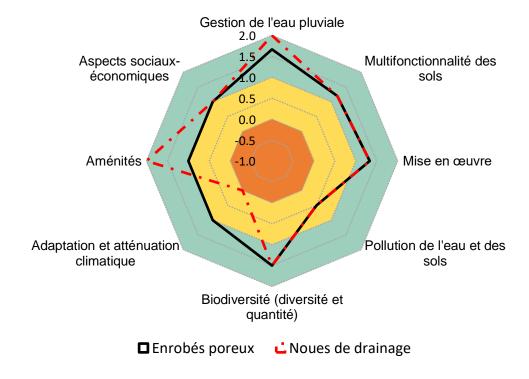


Figure 2 : Impacts positifs et négatifs des noues

6. ANALYSE DU CYCLE DE VIE

Matériaux	Valorisation
Graviers roulés et/ou graviers concassés	Réutilisation ou utilisation dans le processus de fabrication d'autres matériaux.
Géotextile	Peut être recyclé par décyclage et/ou valorisé thermiquement.
Drain en matière plastique	Si propre : recyclé par décyclage ; Couramment valorisé thermiquement.
Plantes	Peuvent être compostées

Tableau 6 : Les filières de valorisation des matériaux utilisés [14]

7. RECOMMANDATIONS

On notera que les noues assurent la gestion d'événements d'inondation occasionnels, mais peuvent rester longtemps sans apports d'eau. De plus, elles ont comme rôle principal la régulation hydraulique et/ou d'épuration locale, et non l'aspect esthétique. Une attention doit être portée aux plantes envahissantes qui peuvent poser des problèmes écosystémiques et dont les opérations de retrait sont compliquées [3]. Elles doivent donc faire l'objet d'une surveillance.

L'idéal est de choisir des plantes qui n'exigent pas beaucoup d'entretien et de donner des préférences à des arbres qui occupent moins d'espace sur le sol. Si possible choisir des arbres plus hauts qui fournissent plus d'aménités. [3].

Pour allonger la durée de vie de l'aménagement, il faut minimiser l'érosion et éviter le colmatage, bien que celui-ci ne soit pas fréquent. En conception, la forme la plus indiquée pour cela est trapézoïdale [7; 10]. Le ramassage des déchets et des feuilles et autres encombrants est essentiel. Il faut faire attention à des contre-pentes, qui peuvent empêcher les eaux de s'écouler correctement [3].

Si la noue est proche d'un bassin versant agricole ou à proximité d'un revêtement sableux, il est recommandé d'installer un dessableur (dimensionné en fonction du volume d'eau) en amont afin d'éviter les problématiques de colmatage. [3].

L'Agence de l'eau RMC [3] donne certaines précautions de surveillance à suivre :

- Le temps de rétention de l'eau (après plusieurs jours sans pluie). La noue doit accumuler l'eau en moins de 24 heures. 48 heures est la limite usuelle pour ne pas favoriser la reproduction des moustiques. Une accumulation de plus de 3 jours indique une situation anormale [3;9];
- Débordements ou inondations provenant de zones adjacentes en raison de précipitations conventionnelles;
- L'apparition des mauvaises odeurs et couleurs peuvent être l'indication de la présence de rejets suspects;
- L'accumulation des déchets.

7.1. POUR ALLER PLUS LOIN

Parapluie-hydro

L'outil *Parapluie-Hydro* [15] aide à choisir la solution de gestion des eaux et à faire le dimensionnement par rapport aux caractéristiques du projet.

L'influence des paramètres

Fardel (2019) [7] montre dans sa thèse comment dimensionner une noue pour qu'elle atteigne différentes performances hydrologiques et d'épuration.

RÉFÉRENCES

- [1] 13 COMME UNE. Le parapluie de Cergy-Pontoise! 13 comme une [en ligne]. 2019. Disponible sur : https://13commeune.fr/actualite/le-parapluie-de-cergy-pontoise/
- [2] AGENCE DE L'EAU RMC. (2018). Désimperméabiliser les sols l'ambition du SDAGE Rhône Méditerranée. Conférence Ville Perméable, (p. 48). Lyon.
- [3] AGENCE DE L'EAU RMC et GRAND LYON. Projet Ville Permeable : guide d'aide à la conception et à l'entretien [en ligne]. Grand Lyon, 2017. Disponible sur : https://www.grandlyon.com/fileadmin/user_upload/media/pdf/eau/20170926_guide-projet-ville-permeable.pdf
- [4] BORST, Michael et al. Swale performance for stormwater runoff. Dans: Low impact development: new and continuing applications. American Society of Civil Engineers., 2009, p. 182–190.
- [5] BRUXELLES ENVIRONNEMENT. Choix des matières premières. *Guide Bâtiment Durable* [en ligne]. 2016. Disponible sur : https://www.guidebatimentdurable.brussels/noues/choix-matieres-premières
- [6] EKKA, Sujit et Bill HUNT. Swale terminology for urban stormwater treatment | NC state extension publications. *NC State Extension Publications* [en ligne]. 2020. Disponible sur: https://content.ces.ncsu.edu/swale-terminology-for-urban-stormwater-treatment

- [7] FARDEL, Alexandre. Fonctionnement hydraulique et propriétés épuratoires de techniques alternatives de gestion des eaux pluviales cas des noues [en ligne]. Thèse de doctorat, École centrale de Nantes, 2019. Disponible sur : https://theses.hal.science/tel-02896888
- [8] GRAIE. Les ouvrages d'infiltration la fonction filtration [en ligne]. Lyon, 2015. Disponible sur : http://www.graie.org/othu/pdfothu/Gessol-ouvrages-infiltration-web.pdf
- [9] GRAIE. Comparaison des coûts de différents scénarios de gestion des eaux pluviales [en ligne]. Métropole de Lyon, 2018. Etude de cas. Disponible sur : http://www.graie.org/graie/graiedoc/doc_telech/Eaux_pluviales_gestion_source_cout sept18.pdf
- [10] GRAND LYON. Les ouvrages aériens de gestion des eaux pluviales [en ligne]. Lyon, 2010. Disponible
 - sur : https://www.grandlyon.com/fileadmin/user_upload/media/pdf/voirie/referentiel-espaces-
 - <u>publics/20091201_gl_referentiel_espaces_publics_ouvrages_aeriens_gestion_eaux_pluvi</u> ales.pdf
- [11] MINISTÈRE DE L'ÉCOLOGIE, DU DÉVELOPPEMENT ET DE L'AMÉNAGEMENT DURABLES. Les collectivités locales et le ruissellement pluvial [en ligne]. 2006. Disponible sur : http://www.mementodumaire.net/wp-content/uploads/2012/07/Collectivités-et-ruissellement-pluvial-2006.pdf
- [12] SHAFIQUE, Muhammad et Reeho KIM. Green stormwater infrastructure with low impact development concept: a review of current research. *DESALINATION AND WATER TREATMENT* [en ligne]. 2017, **83**, 16–29 [consulté le 25 juillet 2023]. Disponible sur: doi:10.5004/dwt.2017.20981
- [13] VILLAIN, C. (2016). Pourquoi pas noues? Disponible sur : https://www.linkedin.com/pulse/pourquoi-pas-noues-christian-villain/?originalSubdomain=fr
- [14] WALLONIE ENVIRONNEMENT SPW. Gestion durable des eaux pluviales a la parcelle en zone urbanisable : fiche informative outil de gestion des eaux pluviales La noue [en ligne]. 2020. Fiche n° 09. Disponible sur : http://jesuishesbignon.be/wp-content/uploads/2020/03/fiche 09 noues.pdf
- [15] Outil Parapluie hydro (https://www.parapluie-hydro.com/grandlyon/)